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Polyandrocarpidines: Antimicrobial and Cytotoxic 
Agents from a Marine Tunicate (Polyandrocarpa sp.) 
from the Gulf of California1 

Sir: 

During the Illini-Trojan Baja expedition of 1976,2 a red 
encrusting colonial tunicate was identified in our mobile lab­
oratory as possessing potent activity against Bacillus subtilis. 
Subsequently, the tunicate was identified as a Polyandrocarpa 
sp.,3 and its extracts were demonstrated to have cytotoxic 
(L12104a and KB4b cells) as well as antibacterial activity. We 
assign here the structure of the major bioactive component of 
this species (polyandrocarpidine I) as la (Chart I) and the 
minor component (polyandrocarpidine II) as lb. The poly­
androcarpidines are remarkable, both for the occurrence of the 
highly strained cyclopropene ring (heretofore found in nature 
only in sterculic and related acids5a 'b and in calysterol5c) and 
for their relationship to the recently discovered acarnidines 
(2a-c),6 which occur in a sponge (Acarnus erithacus), in a 

(CHi)2C=CHCONH(CH,):iN(CH,):>NHR 

COR' 
2a-c, 4a-c 

2a-c, R = C(=NH)NH 2 
2a, R' = (CHJ10CH3 

b, R' = (CH2J3CH=CH(CHJ5CH3 (Z) 
c, R' = (CH,)3(CH=CHCH2)3CH3 (all-Z) 

4a-c, R = — < Q 

4a, R' = (CH2),0CH3 
b, R' = (CH2).,CH=CH(CH2)SCH3 (Z) 
c, R' = (CH2)3(CH=CHCH2)3CH3 (all-Z) 

phylum (Porifera) very distant from that of the tunicates 
(Chordata). 

A sample of the Polyandrocarpa species was homogenized 
in the ethanol in which it had been stored and the chloro­
form-soluble fraction of the concentrated ethanol extract was 
chromatographed over a silica gel column. Elution with chlo-
roform-methanol (3:2) gave a mixture consisting of 90% 
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Chart I. Polyandrocarpidines I and II (la, lb), Their Derivatives, and the Synthetic Route to a Derivative (6a) 
H 

CH;/CH,)3CH=CHCH=CH' 

CH ;,(CH2),CH=CHCH=CH 

NH en,, NH 
Il H2 , P d / c / V Il 

CONH(CH2)„NHCNH2 ' > CH1(CH2J7CH- CHCONH(CH2)„NHCNH2 
C2HjOH 

IT 5a, n = 5; 5b, n = 4 
o o I 

J I N J I X I NaHCO3 

/V N" x 
CH3 CH,(CH,)7CH—CHCONH(CH,)„NH—(Q" 

N—(' N- ' 
CONH(CH2)„NH—(Q 

N-

CH3 

CH3 

CH3 

6a, n = 5; 6b, n = 4 
6a (cis + trans) 

3a, n = 5; 3b, n = 4 

CH, 
/ V 

CH3(CH2)7CH—CHCOCl 

4. SOCl2 

3. HCl 

2. NaOH 

1. N5CHCOOC 

CH3(CH2 ) 7 C H = C H 2 

CH3 

H,N(CH2)&NH—(Q) 
N-

CH3 

o o 

„. SAA- NaHCO1, 

NH 

Il 
L CH1SCNH, 

H2N(CHJ5NH2 

polyandrocarpidine I (Ci8H3 0 N 4 O) 7 a and 10% polyandro-
carpidine II (Ci7H2SN4O).7 1 1 The mixture inhibits Bacillus 
subtilis (16-mm zone size from 100 ^g) , Staphylococcus au­
reus (15 mm), Streptococcus pyogenes (24 mm), and Myco­
bacterium avium (15 mm); 4 c inhibits L1210 cells (ID50 4.8 
Mg/mL);4a is cytotoxic toward monkey kidney tissue culture 
(CV-I cells, 14-mm zone size from 200 ng);4d and shows slight 
antiviral activity against Herpes virus, type I.4d 

A positive Sakaguchi test and a 13C N M R absorption at 
157.3 ppm suggested a guanidine group6 and the complex was, 
accordingly, converted to a mixture of 4,6-dimethylpyrimidine 
derivatives6-8 (Char t I, 3a, C23H34N4O, and 3b, 
C22H32N40)7 b by treatment with acetylacetone and sodium 
bicarbonate. The high resolution electron impact mass spec­
trum of 3a shows a series of peaks from m/e 107 to 235, which 
establishes the l-acylamino-5-(4,6-dimethyl-2-pyrimi-
dylamino)pentane unit like that found in the corresponding 
derivatives (4a-c) of the acarnidines,6 and another series of 
peaks from m/e 325 to 367 (M - C 4 H 9 to M - C H 3 ) , which 
establishes a terminal «-butyl group. The amide group is 

•367.2528 

»353.2362 

»339.2161 

(»325.2013 

C,HC 

»192.1490, 190.1342 (-2H) 

»178.1349 

•164 .1183 

• 150.1027 

•136 .0874 

»107.0589 

•123 .0789 (+H) 

confirmed by an infrared band at 1660 cm ' and a 13C NMR 
absorption at 176.6 ppm in polyandrocarpidine. 

Hydrogenation of polyandrocarpidine complex over palla­
dium/charcoal in ethanol gave a mixture of hexahydro de­
rivatives (Chart I, 5a, Ci8H36N4O; 5b, Ci7H34N4O)73 which 
was converted by acetylacetone to the dimethylpyrimidyl de­
rivatives (6a, C23H40N4O; 6b, C22H38N4O).70 The major 
component (6a) showed a GC-mass spectral fragmentation 
pattern similar to that of 3a, but indicating a terminal «-octyl 
group (M - CH3 through M - C8H]7). 

The ultraviolet spectrum (EtOH) of polyandrocarpidine 
contains a maximum at 275 nm indicative of a conjugated 
triene not further conjugated to a carbonyl group.9 The acyl 
group (Ci2HiSO) is thus defined as 

CH,(CH2)3CH=CHCH=CHC=CX-

Z Y 

X + Y + Z = C2H2O; X or Y or Z = -CCO-

by the mass spectral data cited for 3a («-butyl group) and 6a 
(n-octyl group) and partially confirmed by osmium tetrox-
ide-periodate oxidation of polyandrocarpidine to give pentanal 
and glyoxal, identified by isolation of their 2,4-dinitrophen-
ylhydrazone derivatives. The 13C NMR spectrum of la indi­
cates five = C H - carbons and one = C < carbon (doublets and 
singlet in the off-resonance spectrum, respectively); an allene 
grouping, -CH=C=CHCO-, is missing in the infrared 
spectrum. Thus, only one arrangement is possible for C-2 
through C-4 of the acyl group, a cyclopropene ring: 

CH 
/ \ 

-C—CHCO-



Communications to the Editor 7411 

In agreement with the cyclopropene structure is the appearance 
of one of the = C H carbons and the a -C—H- carbon at ab­
normally high fields, 102.8 and 28.9 ppm, respectively.10 

Structure la also agrees with its selective uptake of 3 mol 
of hydrogen, noted above, which would give an alkylcyclo-
propanecarboxamide (5a). The dimethylpyrimidyl derivative 
(6a) of 5a was synthesized from 1-decene by the route shown 
in Chart I. The cis and trans isomers of 6a were separated and 
analyzed by GC-mass spectrometry; the more abundant 
(presumably the trans isomer)" cochromatographed with 6a 
and gave the same mass spectrum as 6a prepared from the 
natural product. 

The structure of the minor homologue, polyandrocarpidine 
II, was assigned as lb (Chart I) by its molecular formula 
(Ci7H28N4O)73 and those of its derivatives (3b, 5b, 6b),7a-b all 
with formulas CH2 less than their polyandrocarpidine I ana­
logues. The GC-mass spectral fragmentation pattern of 2b 
locates the missing -CH2- group in the guanidinoalkylamine 
group, since 2b gives peaks from m/e 107 through 221, as 
shown. 
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Lanthanide Photochemistry Initiated in f-f Transitions 

Sir: 

There have been few studies concerning photochemical re­
actions of the lanthanides (Ln) and all have involved photo-

This article not subject to U.S. Copyright. Pu 
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Figure 1. A portion of the absorption spectrum for Eu(thd>3 in acetone 
(right-hand scale). The large feature is due to the 7Fo - * 5D2 transition 
and is split owing to its hypersensitivity. The slight hump at 472 nm is due 
to 7Fi -» 5D2 thermally excited-state absorption. The photochemical rate 
of appearance of product, monitored spectrophotometrically, and nor­
malized by total incident energy, is given on the left-hand scale. Error 
bands at each wavelength are ±20% of the rate at that wavelength. 

redox processes in charge transfer or f-d bands in Ce(HI1IV) '-2 

and Eu(IIIJI).3,4 The line-like intrashell f-f absorption fea­
tures5 found in the lanthanides (Figure 1) occur throughout 
the ultraviolet to near-infrared spectral regions and have been 
ignored with respect to photochemical reactivity, since the 4f 
electrons are presumably effectively shielded from interactions 
with the chemical environment.6 However, it is well known that 
energy can be efficiently exchanged betwen electronic states 
of complexing ligands and excited Ln 4f levels.7'8 Under the 
appropriate conditions, such energy-transfer processes could 
result in photochemistry. This communication reports the first 
demonstration that energy absorbed in an f-f transition can 
result in a photochemical change, photosubstitution. 

Since complexes of lanthanides are much less stable than 
those of most transition metals, strongly chelating ligands are 
required in any study of photosubstitution reactions, in order 
to reduce thermal reactions.9 In the experiments presented 
here, the bidentate /3-diketonate, 2,2,6,6-tetramethyl-3,5-
heptanedionate (thd), was used. Complexes10 of either Pr(III), 
Eu(III), or Ho(III) were dissolved in an appropriate solvent 
to give solutions 0.01 M in Ln(III) for most experiments. The 
samples, 0.5-1.0 mL, were irradiated and spectrophotomet­
rically analyzed in stoppered 1-cm fused silica spectropho­
tometer cells. The photolytic source was an argon ion laser, line 
tunable over ten transitions in the blue to green region of the 
spectrum. The 100-200 mW laser beam was passed through 
the cells without focussing, using a 1.5-mm-diameter spot 
size. 

Irradiation results in the formation of a broad absorption 
peak (see Figure 2) and the rate of formation is observed to be 
linear in both laser power and irradiation time, hence linear 
in incident energy. This effect is observed with all three 
Ln(thd)3, but only in coordinating solvents, such as pyridine, 
ethanol and acetone." No effect is observed in poorly coor­
dinating CCU or hexane. Furthermore, little effect is seen when 
solutions are deaerated before photolysis by bubbling with 
argon gas. The spectra of the products also includes structure 

ished 1978 by the American Chemical Society 


